Optimization-Based Controllers for Robotics Applications (OCRA): The Case of iCub’s Whole-Body Control

نویسندگان

  • Jorhabib G. Eljaik
  • Ryan Lober
  • Antoine Hoarau
  • Vincent Padois
چکیده

OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimizationbased controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented. OCRA stands for Optimization-based Control for Robotics Applications. It consists of a set of platform-independent libraries which facilitates the development of optimization-based controllers for articulated robots. Hierarchical, weighted, and hybrid control strategies can easily be implemented using these tools. The generic interfaces provided by OCRA allow different robots to use the exact same controllers. OCRA also allows users to specify high-level objectives via tasks. These tasks provide an intuitive way of generating complex behaviors and can be specified in XML format. To illustrate the use of OCRA, an implementation of interest to this research topic for the humanoid robot iCub is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach

Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...

متن کامل

An Efficient Quadratic Programming Approach to Stabilizing Dynamic Locomotion

We describe a whole-body dynamic walking controller implemented as a compact, convex quadratic program. The controller minimizes an optimal control condition on a simple model of the walking system while respecting the dynamic, input, and contact constraints of the full robot dynamics. By exploiting sparsity and temporal structure in the optimization with an active-set algorithm, we surpass the...

متن کامل

Feature-Based Control of Physics-Based Character Animation

Feature-Based Control of Physics-Based Character Animation Martin de Lasa Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2011 Creating controllers for physics-based characters is a long-standing open problem in animation and robotics. Such controllers would have numerous applications while potentially yielding insight into humanmotion. Creating controllers re...

متن کامل

Frequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm

Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...

متن کامل

A Thorough Comparative Analysis of PI and Sliding Mode Controllers in Permanent Magnet Synchronous Motor Drive Based on Optimization Algorithms

In this paper, the speed tracking for permanent magnet synchronous motor (PMSM) in field oriented control (FOC) method is investigated using linear proportional-integral (PI) controller, sliding mode controller (SMC) and its advanced counterparts. The advanced SMCs considered in this paper are fuzzy SMC (FSMC) and sliding mode controller with time-varying switching gain (SMC+TG) which can effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018